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PROBLEMS OF OSCILLATIORS OF A FLUID SUBJECTE

TO SURFACE TENSICN FORCES

N.N.Moiseyev and F.L.Chernous'ko

Discussion of certain problems arising in the theory of the

behavior of fluids under conditions of weightlessness and in

weak gravitational fields. The problem of small linear oscil-

lations of an ideal fluid is formulated, and the conditions

of solvability of this problem and the properties of its

spectral structure are discussed. It is observed that, al-

though the problem of small oscillations theoretically in-

volves no special difficulties, practically no effective

solutions to it are known. It is shown that the problem of

small oscillations of an ideal fluid in the presence of

surface tension can be effectively solved when the surface

tension is small in comparison with mass forces.

The equi-

librium and natural oscillations of a heavy ideal fluid in

a vessel are studied under this assumption.

Recently, various problems of the behavior of fluids under conditions of

weightlessness and in weak gravitational fields have become topical. The present

article is devoted to two aspects of the oscillation theory.

The first two

Sections deal with the formulation of the problem of small oscillations of

fluids, discuss the questions of the solvability of problems of this theory,

and establish the properties of the spectra. The other Sections deal with the

% Numbers in the margin indicate pagination in the original foreign text.
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oscillations of fluids under various simplifying assumptions.

Section 1. Formulation of the Problem of the Theory of
Oscillations of an Ideal Fluig

1. If the intensity of volume forces F = YU is low, the forces of surface
tension become of decisive significance in problems of the dynamics of an ideal
fluid. The motion of an ideal incompressible fluid is described by Euler's and
continuity equations
(1.1)
(1.2)

where v is the velocity, p is the fluid density, p is the pressure, and t is
the time.
At an immobile wall (surface T) the condition of non-leakage
vay =s 0, (1.3)

must be satisfied, where ny is the unit vector of the normal to Z. At the free
surface (surface S), the condition of thermodynamic equilibrium

pe=oKk+tcont, Ke=t/R+1]N, (1.1)
must be satisfied, where K is the double mean curvature of the surface S, while
B, and Ry are its principal radii of curvature, and o is the coefficient of
surface tension. At points along the line of intersection between the surfaces
S and T (contour T') the normals to these surfaces form a constant angle v of
contact, which depends solely ori the material of shell ¥ and on the properties
of the fluid. The equation of the free surface and the shell will be speci- /1072
fied as %(x, y, 2, t) = 0 and 3x(x, y, z) = O. Then, this condition can be

written as

o @z 8y oy b Az

Nosy (1.5)
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where N = |vg, | 1v8.! is the normalizing factor. Hereafter, the equation of the
free boundary will often be written in the form of z = Z(x, y, t).

In this case, the condition (1.5) will become

T _Tr 2 s = = Neasy. (1.6)

(1.7)

must be added to the above conditions. Here, v, = (v, ns) is the projection of
the velocity vector onto the normal to the surface S; N; is the normalizing

factor:

2. First, let us consider a static problem. If v =0, thenp = U + const

and the condition (1.4) will assume the form
U — oK = conat. (1.8)

The constant in eq.(1.8) can be taken as zero without restriction as to generali-~
ty. The expression U - oK results from the action of some nonlinear differential
operator on the function Z(x, y). Hence, the form of the free surface in equi-
librium position satisfies the nonlinear partial differential equation (1.8) and
the boundary condition (1.6). In addition, the free surface {function Z(x, y)]
must satisfy the condition of isoperimetricity: volume of the fluid given.

Generally, this is a difficult problem and forms a separate domain of in-
vestigation. Here we will dwell only on one elementary case (reducing to the
calculation of the roots of a transcendental equation).

let us assume that mass forces are absent; then the free surface is a

surface with constant curvature. Let us further assume that the region occupied
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by the fluid has an axis of symmetry and that its volume is V. Thus, one of the
possible solutions of the boundary-value problem [egs.(1.8), (1.6)] will be a
sphere whose line of intersection with the surface T is a two-dimensional curve
(ef, Fig.la, giving the notation) and whose center is located at the axis of

symmetry.

Fig.1l

let us assume that the equation of the surface ¥ has the form of r = F(h),
where r is the distance of some point from the axis of symmetry, and h is the
height from the bottom of the vessel. The problem reduces to finding two para-
meters: the radius of curvature R of the free surface and the height ho of the /1073

free surface at the wall. We can determine these with the aid of two equations:

(1.9)

F(h) mcot(aty) (am Arostafi) /N

The first equation expresses the constancy of the fluid volume and the second,
the constancy of the contact angle.

In the event that the surface T is a sphere of radius R (cf. Fig.lb),

L
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egs.(1.3) reduce to

3 ®RIU — (1= 003 )22 + cosp)}

he ﬁ-sg;i.’(i + cosB),

3. It may happen that the free surface S does not intersect the vessel
"surface (the bubble being located entirely within the fluid). In this case,
the problem of statics is applicable only if mass forces are absent, since the
position of the bubble is imstable with respect to these forces: the application
of even negligibly small mass forces canses the bubble to move as an integral
whole.

If mass forces are absent, the surface S will be a sphere of radius R.

t vs place the origin of the spherical coordinate system r, ©, ¥ at the center
of this sphere. Then, let us consider a surface
E= 0. 1) =Ho.9) — R,

close to the sphere S. Its double mean curvature K(€) can then be presented as

K()es —4 I 0 ;
%) R +LE+ "‘P’» (1.10)
where /307%
1 1 & 1 @8 3

We will next discuss certain properties of the operator L. To this end, let us
consider the equation

Li=0. (1.12)
A simple check test readily demonstrates that eq.(1.12) has the following non-

trivial solutions:

Lﬂh!=cp(un =g

(1.13)




where P, (x) denote legendre polynomials and P} (x), associated Legendre functions
of the first kind. The theory of Legendre polynomials states that eq.(1.12) has
no other single-valued and bounded solutions. In fact, any solution of eg.(1.12)
that is periodic with respect to ¥ may be represented by the following linear
combination of functions:

@," sin np, 0;" cos mp, n=0142...,

where 9] (°) satisfies the equation

;{E"é' d—‘;- (ainoa%‘bx‘) + (‘2-—;,-%)'@,6@0,

At n = 0, this equation is a particular case of legendre's equation. Its linear—
1y independent solutions will be P, and @ where P is a legendre polynomial and
Q; is a legendre function of the first kind (the function Q is not bounded).

At n # 0, this equation determines the associated Legendre functions P} and (.
From the theory of these functions, it is known (Bibl.2) that P3(8) and Qi(9)
have a special feature: the function Q;, at no matter what ratio of n to m; and
the function Py, on condition that n >m.

Hence, the equation

Lty (1.14)
has solutions only in the functional space f that is orthogonal to the functions
£,, €2, and £3. The solutions (1.13) have a simple physical meaning: They de-
scribe infinitesimal movements of the sphere S as an integral whole along the
axes %X, ¥y, and z. In particular, the solution £; describes the movement of the
bubtle along the z-axis to the extent ¢, with an accuracy to within first~order
smallness.

Next, let us assume that the fluid is subjected to a uniform field U = agz,
where a is the field strength, which we consider low (of the order of £). The

linearized equation (1.8) can then be rewritten in dimensionless form
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ecn0—Li=0 (eemai®/g), (1.15)
Equation (1.15) is of the type of eq.(1l.14) such that the function f = € . Thus,
no matter how low the intensity of the mass forces might be, eq.(1.15) has no /1075
bounded solutions. This means that the bubble cannot be in an equilibrium in-
side the fluid.

L. let us assume that the static problem is solved, i.e., that the form of
the free surface has been determined in one way or another. The free surface,
in the equilibrium position, will be denoted by Sy,. Ilet there be motion in the
neighborhood of this position and let us correspondingly linearize the problem.
Then, eq.(1l.1l) can be rewritten in the form of

’

%mv(%’.-%-).. (1.16)
where p' =p - po(x, ¥, z) - added to p, - is the pressure under equilibrium
conditions.

The equation of the free surface will become

@p = Bo(z,5,1) + Np (e wint) =0, |
where ¥ is considered to be of first-order smallness. We denote, by Nj, the

normalizing factor

of the function &, calculated for points of the surface S,. Substituting the
expression %, in eq.(1.7), we have

.. | 1.17
"a’i"" VUp =20, ( )

The condition (1.17) must be satisfied along Sy .
Since, in view of the incompressibility

SW"*‘%O then
8
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t is readily shown that this constant is zero. In the neighborhood of the

surface Sp, we introduce the curvilinear coordinate system o, B, 6:

The equation of the surface S, will be § = 0. Utilizing the curvilinear coordi-
nates and the close spacing of the surfaces S, and 3, we rewrite, in linearized

form, the equation of the free surface
orm 8] (521 (2 (42] +motepme

Here, #(o, 2, t) = #(X(o, 8), Y(~, 8), Z(o, #), t). It follows that & =

= -4(e, 8, t). Since g 8ds = O at any instant, we have

In linearized form, the condition of thermodynamic equilibrium, satisfied along

Sq, will be /1076
(1.19)
The boundary-value condition (1.5), in linear formulation, reads

Here, the derivative is taken along the normal to I', lying in the plane of con-
tact with S,; k. and kv are the curvatures of the sections of the surfaces S,
and T with the plane normal to I.

Thus, in its linear formulation, the problem of oscillations of the fluid
reduces to determining the functions v(x, ¥, z, t), P'(x, ¥, 2, t), ¥(x, v, 2, t)
satisfying egs.(1.2), (1.16), (1.17), (1.19) and the conditions (1.3) and (1.20).

Note. We will derive the condition (1.20) along the contour T, which is




satisfied by the function ¥ because of eq.(1.5). It is simplest to derive this
condition geometrically.
let us assume that A is a point on the contour T along which the wall T of

the vessel is intersected by the static free surface Sp; n. is the intermal

normal to ¥ at the point A; ns_  is the external normal to 5, at the same point
(Fig.2). Iet us lay the plane G across the vectors ny, Ns, - Without restric-~
tion of generality, we can assume that the line of intersection of the plane G
with the surface S, coincides near the point A with the line # = const. Then,
the coordinate o is the length along the curve on which S, and G intersect, i.e.,
along the normal to I' on the surface S,. At the point A we have, by definition,
n{s = COS Y.

let us assume that B is the point of intersection of the dynamic free
surface S, the vessel wall ¥, and the plane G. Obviously, ¥ will then be the
distance from the dynamic to the static free surfaces, reckoned from the normal
to the latter. Then, with an accuracy to within higher-order smallness, AB =
= -{/sin y. We will next calculate the variation in the angle vy between the
normals ngng on transition from the point A to the point B. This variation Ay
consists of three terms.

First (Fig.2), the static free surface rotates through the angle Ay; =



= ACk;, where ks is the curvature of the line of intersection of the surfaces S

"

and G. Obviously, AC = AB cos Y. Second, the surface of the walls rotates

through the angle Ave

i

ABky, where kv is the curvature of the line of inter-
section of the surfaces ¥ and G. Third, in the plane G, the dynamic free surface,
together with the static surface, makes the angle Mys = 9¥/dv. Taking into
account the signs of the angles and the value of AB, we have

By = Ayi — Avy + Ays o= — (09 ] da) = ¢

On the other hand, the variation Ay is
Ay == (8y/00)AB w= —(8y | 80) (¢ /sin ¥),
where o is the length of the path along the line of intersection of ¥ and G.

Thus, in the general case, the condition over the contour I will be

If the properties of the wall material are identical throughout, then 3vy/3c = 0
and we arrive at the condition (1.20).

5. This problem can be simplified: Within the scope of the linear /1077
theory, only potential flow is in question. To prove this statement, consider
the set E of solenoidal vectors v prescribed in T - the region bounded by the
surfaces > and Sy

The field v can be represented by superposition

vEetw" (1.21)
of the potential field u = Vvt and the vortical w field, where © is a function
harmonic in T and w satisfies the condition 7w = 0.

Equation (1.21) can be realized by innumerable methods. This raises the
cquestion of the most complete isolation of the potential component.

We will conditionally consider the subdivision complete if the vector w is,

in one way or another, orthogonal to the vector u. In order to make this defi-
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nition more precise, a metric must also be introduced into the set E, thus
transforming this set into a space. It appears most logical to utilize the
energy metric _
(vi, va)g = Sv".v:dr
L
Thus, in this case, completeness of subdivisions means that (u, w): = Q.

We will denote by E, the subspace of the potential vectors and determine
the set E, of the vectors we& E whose normal component is zero over £ + S. We
will prove that the set E, belongs to the orthogonal complement of E,. To this
end, we will utilize Green's formula, the condition that the field be solenoidal,

and the condition w, = O on ¥ and 54:

(w5 = Vowds= § quads =0.|
< 48,

This provides the means for the structural isolation of the potential field
component. First, we consider the following Neumann problem

Ap=0av, (dgfiw}==(wm) at TandSp. (1.22)
The solution of the problem (1.22) makes every vector field v correspond to the
gradient field u = ¥n. We will write this fact as: u = Tyv, where T, is the
operator of orthogonal mapping of E onto Ey. The vector w is determined by the
formila w=v-uorw-=I,v.

On having determined the mapping operators, we return to our problem.

Applying the operators T, and M, to both sides of eq.(1.16)

| (122130)28
ow (1.24)



Equation (1.23) yields the Cauchy-lagrange integral

N I F
, —— (1.25)

Thus, the pressure field is determined solely by the potential component of the
velocity field.

Note. It is exactly this fact that warrants introducing the energy metric
and the corresponding expression for the potential component.

It follows from eq.(1.25) that, from the viewpoint of the linear field
theory, w does not change in time, meaning that the point vorticity is constant.
Using the definition of the potential component (1.22) we will rewrite

eq.(1.17):

%?Jr%%*‘*o- (1.26)
The condition (1.26) shows that, in the theory developed here, the free surface
is determined uniquely by the potential component.

The pressure distribution along the free surface also is independent of w,
so that eq.(1.19) can be written in the form of
P-g‘!+ol,¢ = U(y). (1.27)
Thus, the problem reduces to determining the function @ harmonic in T and the
function ¥ according to egs.(1.3), (1.18), (1.20), (1.26), and (1.27).
This proves that the assumption of potentiality, usually adopted in linear

problems, is a logical consequence of exactly this linearity.

Section 2. Solvability of Problems of the Theory of Iinear
Oscillations and Structure of the Spectrum

1. The problem formulated at the end of the preceding Section can be re-
duced to a one-operator equation. Let us use the Neumann operator H. The

expression




e(P) =H{{Q), Q&8 Pex,

is to mean that the function f(Q) iprovided this function satisfies the condi-~
tion (1.18)] corresponds to a function harmonic in T, whose normal derivative
becomes zero on ¥ and f(Q) on Sy. The operator H is positive-integral with a
weak singularity (Bibl.3). Hence, it is completely continuous. Its self-
conjugateness derives from the symmetry of Green's function of the Neumann prob-
lem.

The condition (1.26) makes it pbssible to write

Using eq.(2.1) and considering that U(¢) = -pk@ for small ¥, we rewrite eq.(1.27):
i o |
n e 2y = ~ky. | (2.2)
ol p !

Equation (2.2) is an integrodifferential equation containing only one unknown
function ¥(a, 8, t) satisfying t! PE-FHN'==0 .iition (1.20). This condition,
du *

in the variables o, 8, has the form

(2.3)
where B is the prescribed function of the point of the curve I' where the
surfaces S, and ¥ intersect.

2. A fundamental problem of the theory of oscillations is to find the
fundamental oscillation modes. We will pose ¥ = = cos pt.
Equation (2.2) has the form
whf=Af (&= —(o/p)LZEM, (2.4)

where I is a unit operator. The operator L is self-adjoint. This fact is
rather obvious, since the operator L describes a conservative system. First,
let us consider the particular case where the operator has the form of eq.(1.11)

and is prescribed with respect to a set of functions that depend only on the

13



width 9, and where B = O. Then,

! (2.5)
Ma—m[
['(0s) = '(84) =0, .‘ (2.6)

where 6,, 8, are the values of the angle 8 corresponding to the vessel walls.

By determining the scalar product
“ ‘s.
(/,8)= Ssinwnn, K
R !

we can prove the self—adjointness of L:

== e o5ty 3 o) ] |

mS(‘:{’ 2 sn 0 —2fg sin0 ) dt =

e [} e

=——g“n0!

= T ——(aino ) +2g}/:10=-([. 2

The proof for the self-adjointness of L in the general case is just as ele-
mentary. Its realization requires using Green's formulas instead of én integra~
tion by parts. The self-adjointness of L directly implies the self-adjointness
of the operator A from eq.(2.4).

We will consider only the case where the operator A is positive-definite.
Since (Af, f) = 20, where Tl is the potential energy of the mass forces and of /1080
the surface tension forces, our assumption will mean that, when in an equilibrium
position, the potential energy of the system has a discrete minimum, i.e., the
free surface of the liquid is statically stable.

This leads us to the standard problem of eigenvalues (2.4), where L is a
wholly continuous, self-adjoint, positive operator, and A is a self-adjoint

positive-definite operator. On the basis of the known theorems of the spectral

1,




theory of linear operators (Bibl.,), we can draw the following conclusions:
1) The spectrum of the problem {2.4) is discrete and of finite multi-

plicity, with a unique limiting point u = . This means that, under

the conditions considered here, there exists an infinite multiplicity

of eigenfrequencies u, such that uy - « at n -+ » and each eigenfre-
quency corresponds to a finite number of the possible modes of funda-
mental oscillations.
2) The spectrum is entirely located on the real semiaxis, i.e., all
fundamental oscillations are stable.
3) The system of eigenfunctions is complete with respect to Friedrichs!
norm.
4) A1l fundamental oscillations and eigenfrequencies can be derived by
means of Ritz's combination principle.
Note. The reasoning in this Section was essentially based on conditions
of the type of eq.(2.3). If the bubble is entirely within the fluid, this
reasoning retains its validity in the space of the functions orthogonal to the

functions %, 2, and £3 from eg.(1l.13).

Section 3. Elementary Problems of the Oscillation Theory

1. The findings of the preceding Section indicate that, fundamentally, the
problem of small oscillations is not particularly complex but its effective
solutions are nearly unknown.

An elementary problem of this kind is the oscillation of a layer of weight-
less fluid (Bibl.5) bounded by a sphere ¥ of radius Rz and by a free surface,
on the assumption that the latter is a sphere of radius R;, concentric with X

(Fig.3).

15




We set g = Rz/R; and introduce the dimensionless spherical coordinates r,
9, X taking R, as the characteristic scale and placing the origin of the coordi-
nates at the center of the spheres S, ¥. Then the condition of non-leakage

will be written in the form

(3.1)
The set of harmonic functions satisfying eq.(3.1) will then be
: in
@ = const (_n_-'{;-i g - r"'") P, (cos0) ;os (mh). | (3.2)

We will seek fundamental oscillations in the form of « = &(r, ¢, )) sin ut,
¥ = fu”' cos ut, where & is a function of the type of eq.(3.2). Then, the

kinematic condition (1.26) and the dynamic condition (1.27) will read

/e o0 + olf =0 | at re=f, | (3.3)
| where L is determined by eq.(1.11). Eliminating the function f from eq.(3.3),

we arrive at the equation for w. The final result will be /1081

o, . . 1— gt z
“l‘ﬂ;“"' 1)(=+2) l+((ﬂ+‘)/ﬂ]ﬂ4'-' * E

Note the that oscillation frequencies are independent of m. Hence, all the
fundamental oscillations, whose velocity potential is described by the functions

%2 (m = 0, 1, .. n), have the same frequency. Thus, the number w, has the




Fig.

multiplicity 2n + 1. The value of u, = O corresponds to nontrivial solutions
of the equation If = O, which describe the motion of the bubble as a whole.

The least nonzero eigenfrequency corresponds to n = 2,

ot

.2 _t-_q_-‘_’ “pish nmlmi—ﬁ'ﬁuﬁ@
e ‘+‘;'r’ s

2. The example described above exhausts the known exact solutions of this
problem. The known approximate solutions also are few in number. Chernous'ko
(Bibl.6) gives a general method for the solution of the problem of bubble
motion, on condition that the volume of the bubble is small compared with the
volume of the fluid. Another possible case might be: The depth of the fluid
is small (ef. Fig.h) in comparison with the linear dimensions of its free
surface. In this case, the problem can be greatly simplified by utilizing the
narrow-band asymptotic methods (Bibl.7).

To simplify the calculations and to better illustrate the procedure for
the asymptotic analysis of the problem, let us consider the elementary case of
a weightless fluid in an axisymmetric vessel. The free surface represents a

sphere when in equilibrium position. We will consider only axisymmetric oscil-
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lation modes. The equations for the fluid surface in equilibrium position and
for the vessel walls will be written in the form of
re=R, remll4 8(0)-13*‘!{.}. (3.4)

The problem is to find the function #(t, r, A) satisfying in T the Laplace /1082

equation o7 o0 1 9 P
#H )"'ssno‘u(“"oﬁé‘) -2 (3.5)
and the function ¥(t, 6) from the conditions
ot B (3.6)
(3.7)
(3.8)
(3.9)

where 8o is the value of the angle © at the point of contact between the unper—
turbed free surface and the walls. First let us consider the subproblem of de-
termining the function 2(t, r, @) which satisfies eqg.(3.5), the condition (3.6),
and the condition

(¢, R, 8) =a(t, 0), (3.10)
where a is a prescribed function of its variables. We then construct the asymp-
totic solution of this problem for ¢ - 0. ILet us substitute r = R + ¢f into
eq.(3.5):
(3.11)
(3.12)

Employing the notation of eq.(3.12) we can write [see eq.(1.11)]

R
» &_;‘(ﬁ-k 2).

)

The condition (3.6) can be written as

We then construct the solution of the subproblem in form of the series

18



O =Dy 4 ¢D, + Dy ... . (3.13)

For %,, we have

TP oine, 0 st temf, Oywed it 0.
ok , 9%

Hence, % = a(t, 9).
By exactly the same reasoning, we obtain & = 0. The function ¥; satisfies

the following problem

{
3

VY 1 1 .
—o?_ = —)};AQ)J = -}-‘;Aﬂ(‘, 9) in € \
0 -0 &31.3_1_,,(9)_0_1 at ;-"‘ (3.14)
®y=0 ot E=0 %"= 8 s
The solution of the problem (3.14) is given by the formula
‘ . s
The remaining terms of the series (3.13) are not as easy to calculate. 108

Generally, the series (3.13) diverges. Moiseyev (Bibl.7) described the a priori
conditions for its asymptoticity. We will consider these conditions satisfied
and confine ourselves to calculating % and % . Returning to the old variables,

we have
r4§3ﬁ
R

&aa(t. o)+ )““"'m%] ‘ (3-15)

With the aid of eq.(3.15) we can rewrite egs.(3.7) and (3.8)

g e g ey

Thus, the problem is reduced to finding two functions that do not depend on the
radius vector.
To find the eigenfrequencies, we pose a = a(9)e®} ¢ = 2(9)e™ after which

it follows from eq.(3.16) that

19



+208  op=— % (1As + 7'a").

This problem is squivalent to the following eigenvalue problem:
OR-(A + 2) (AP + ¥'F) = —a?p.
The latter problem is fundamentally simpler than the initial problem, since the

sought function B depends only on the variable €.

Section L. Case of low Surface Tension (Bagic Equations
and Static Problem)

1. The problem of small oscillations of an ideal fluid in the presence of
surface tension, formulated in Section 1, can be effectively solved whenever the
surface tension is low compared with the mass forces. Proceeding from this
premise, the equilibrium and the natural oscillations of a heavy ideal fluid
(standing waves) in a vessel will be examined below. Because of the above
statements, we considered only potential flow in Section 1.

The velocity potential of o(x, y, z, t) in the flow region satisfies the
laplace equation and, at the walls of the vessel I, the condition of non-leakage

Ap=0, dp/aN=0at X. (4.1)
where N is the internal normal to the vessel wall. let us assume that the z-
axis is directed vertically wpward and the plane z = O coincides with the
surface of the fluid at rest, in the absence of surface tension (o = 0). At
the free surface z = {(x, y, t), the kinematic and dynamic conditions (g =

acceleration of gravity)

: = L.2
1 (Vop (h.2)

o O 0w e
’&-7‘-‘-+—-2~E—+C+h.+FEK(§) 0 at s=¢(

are satisfied. The second condition in eq.(4.2) is a consequence of the Cauchy-

20




wha

Lagrange integral and of eq.{l..L), while hy is a constant.

The double mean surface curvature has the form /1084,
K@) 5 S0 HEI= T+ Tu(i 43 (L.3)
(14 C.‘%-C.’)"'

where the subscripts x, y denote partial derivatives; the upper sign must be

used in the event that the fluid is located below the surface z = [, and the

if the fluid is located above the surface z = [, The funection

Le il

lower sign,
t(x, y, t) may be ambiguous and its different branches correspond to different
signs in eq.(%4.3).

The constant ho will be so determined that, in the equilibrium case (V¢ = 0)
the potential can be taken as independent of t. Prescribing the static form of
the free surface in the form of

2 Lo —ha ot b, g). )
we obtain from eqg.(4.2) the equation for h:

peh + oK (1) —0. (4.5)
The boundary condition for eq.(L4.5) is the prescribed contact angle for the
contour Iy, where the free surface osculates the walls. After having deter—
mined h(x, y), it is possible to find ho if it is assumed that the fluid volume
is the same no matter whether o = O or o # C.

In the dynamic problem, the free surface will be given as
| 9 (4.6)
The oscillation amplitude is considered small and eqs.(b,.Z), (4.3) are linear-

ized with respect to the functions o, f, while simultaneously referring them to

the static free surface [eq.(L.L)]:

i

,‘+th3+M’—'Qla°l “"W”',"‘;‘;Kl“)-o “ (lp.?)
sy o at szl + h. il

s
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where Kﬁ(f) is the linear ~ with respect to f - part of the increment K(h +

+ f) - K(h), which, on using eg.(4.3), we can write in the form

Koll) = F (1 + W+ A2 foc (1 + 37) o+ 2085k -
- h!kﬂ)ti + 2{51'“1' —' ,ly‘h.w)\lx - 2’!,’1,

| (4.8)
o4+ )] = KR (hafs + bafg M 4 1

In addition, the function f satisfies the homogeneous boundary condition of the
type of eq.(1.20) for the contour I'y. The resulting boundary-value problem for
the functions e, f is linear and homogeneous; however, prior to its solution,
it is necessary to find the function h(x, y) satisfying the nonlinear
equation (L4.5).
2. We introduce the dimensionless parameter

e = Ya/ (IVpg), (4.9)

where 4 is the characteristic linear dimension of the vessel, which we will

consider small. Then eq.(4.5) will become

and will contain a small parameter with higher—order derivatives. The 108
boundary condition for this equation (angle of contact between wall and free
surface) is given for an a priori unknown (generally speaking) three-dimensional
contour Iy If o = ¢ = O, the solution is h = 0 and the contour I} changes into
the planar contour I' over which the plane z = O intersects the vessel walls.

We make the logical inference that the contour I} is close to I' when O <
< ¢ € 1, while the solution of eq.(4.5) significantly differs from zero only in
the narrow region near the contour f;. The justification for this hypothesis is
the fact that the approximate solution obtained below exhibits such properties.
To determine the solution, we will make use of the boundary-layer method

(Bibl.8, 9).
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Into the xy-plane, let us introduce the following curvilinear orthogonal
coordinates: n, the distance along the normal from a given point M to the con—
tour I'; s, the arc length of the contour I' from the point taken as the origin

of coordinates, along the normal going through the point ¥ (Fig.5). Note that

specifying the free surface in the form of the function h(n, s) displays two
shortcomings: first, the coordinates n, s are determined randomly for the points
separated from the contour I' by distances of the order of its radius of curva-
ture; second, the function h(n, s), as was pointed out above, may be ambiguous.
These shortcomings can be eliminated if the free surface is specified in para~
metric form. We will, however, employ the coordinates n, s since this will
simplify the calculations without affecting the final results. We will only
assume that the contour I' has no vertex points and that the radius of its curva~
ture everywhere greatly exceeds €. Then, in the narrow region D¢ of the plane
xy adjoining the contour I' and having the width ~ ¢, the coordinates n, s are
unambiguously defined.

Next, we perform the transformation of the prolongation of h = e¢H, n = eu,
s = s. At the boundary contour, because of the finiteness of the angle of con-
tact, we have h, = H, ~ 1. MNoreover, in the region D¢ we clearly have u~ s ~

~ 2. We will assume that the function H(u, s) and all of its derivatives are
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finite [of the order of 0(1)] in D¢. Then we obtain, in D¢, the estimates

h~el, ha~t, ho~e, Ban~ (l)7', Buo~ ) oy ~ e, (L.10)
Let us now pass to the variables n, s in eq.(h.B); téking iﬁt§ account egs.(L.9),
(4.10), and the evident equality (2n/3x)® + (3n/3y)® = 1, we arrive at the
equation

| (4.11)

which is valid in D¢ with an accuracy to within higher orders of smallness.
Here the sign is selected on the basis of the same reasoning as for eq.(4.3).
Derivatives with respect to s do not enter in eq.(4.1l) so that this relation
may be regarded as an ordinary differential equation. It has the same form as
the equation of the free surface for the case of a plane wall (Bibl.l).

Let us write the first integral of eq.(4.1l): /1086

h’
:y:

m"‘fb (L“lz)
Clearly, hy, - O, h € ¢ at a distance from the contour I', and in eq.(4.12) the
wpper sign must be taken, since the liquid lies below the free surface. Hence,
with an accuracy to higher orders of smallness, we have C, = £%¢®. At the
points where the free surface is vertical the sign changes in eq.(4.12) and we
have hy = =, |h| = hy = Le/2.

We then solv; eqg.(4.12) with respect to h,, taking into account the value

of G

Figure é illustrates the elementary forms of the free surface at the wall, for

various angles of inclination of the walls and various angles of contact. It is

evident that the signs of h and h, are opposite at |h| < hy but identical at

Ihl > hy. This predetermines the selection of the plus sign in the preceding
2



formila, in every case,

W= gm (k.13)

Note that it follows from eq.(4.13) that |h| < 2fe. Integrating eq.(4.13), we

have

1. (bo14)

2 Li4yi=
Figure 7 shows the intersection of the free surface [eq.{k.})] with the

vertical plane z, n, Here, n is the internal normal to the planar contour T in

Fig.6 Fig.7

the plane z = O, N is the internal normal to the vessel wall, and the included
angle 6 is the angle of inclination of the walls to the vertical, and { - -h,
at n - », If the contact angle v is prescribed, we have the following condition
at the point P of contact of thg free boundary with the wall

b ect(y+0). (1.15)
A simple geometric examination of Figs.6 ;hd 7 shows that, in all cases, at /1087
the point P we have sgn h = sgn cos (y + 6), while sgn sin (v + §) is opposite
to the sign which must be selected in eq.(4.12). Considering this and substi-

tuting eq.(L.15) into eq.(4.12), we find the value of h at the wall (at point P):

(L.16)




On the other hand, the points on the wall satisfy, in the neighborhood of the
point P, the equation n = -z tan &, or
n == ny == (hy — dy) tan. (L.17)

Substituting egs.(4.16), (4.17) into eq.(L.1l%:), we find the constant

oo

ARfANE GO .
T2 1 43t + sin{y+3))/2

Let us now estimate the function h and its derivatives at a certain distance
from the walls. At n~ 4, eq.(4.14) will yield
—leln [ — V1= (R TZ)] =0(D). \
whence, on resolving the radical for h € 4e, we have
A~ lge¥, &k -=A0(1) > 0. §
Similar estimates are valid for the derivatives at finite distances from the

wall:
he ~ hy ~ e, Ay~ By 2w hyy ~ e~Ne(fe)—1,

This conclusion is not completely rigorous, since we used an approximate solu—
tion which is valid only in the region De¢. However, outsf.de D¢, the derivatives
hx, hy are small and eq.(4.5) can be linearized, selecting the minus sign in
eg.(4.3) (the liquid at a distance from the walls is located below the free
surface). This will yield the equation h = 4%¢®Ah whose solution, within the
region, may not have positive maxima or negative minima (Bibl.10). Therefore,
if the above estimates hold for a certain contour, they will also hold every-
where within that contour. Accordingly, we may assume that h = O outside the
region De¢, with an accuracy to within an error smaller than any degree of ¢.

let us next determine h, from the condition v = hoD, expressing the equali~
ty of fluid volumes at ¢ = O and 0 # 0 (v is the fluid volume between the
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surface z = { and the plane z = ~hs, D is the area of the region xy bounded by
the contour I' in Fig.5). Let us assume that S is the area in the plane zn
bounded by the wall, by the free surface, and by the line z = -ho, (Fig.7).
Then, obviously,
v Sie)de,

. Ly
In calculating S, it is more convenient to perform the integration with respect
to z, since h(n) may be an ambiguous function, whereas the function n(h) 1088
from eq.(lt.l;) is unambiguous:

“"‘.

e} x«xh)—(-:u-ma--»i-

=2 mghy —?‘—'a+ --hl\b(h"‘—‘

Here, integration by parts was performed. Hereafter, we will use egs.(4.17),

(4.13), and (4.16):

b= — Lunahe 4 LM TR
4 3 T ] z : ‘ (’4‘018)
= Pe? (—taad [1 4 sin(y + 8)] 4 cox (y - 8) } = Pe¥(cos y — sim 8) /eon 8,

Substituting in the equality v = hoD the formulas for v and S, we have
e

h.—...‘:‘:.%

D r

Equation (4.19) takes into account the dependence of the contact angle and of

(4.19)

the wall inclination on the points of the wall.

We will then transform eq.(%.8), passing to the variables n, s, utilizing
eq.(4.5) and the estimates (4.10), and discarding the values of higher-order
smallness with respect to e:

Fgpaih.?) -1 [Al + b Alny? = 2many +
+ 1)) + 38+ had) U ha(fans + fymy) e,

(4.20)
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where A is the laplace operator in the xy-plane. The partial derivatives ny, ny
are simply the direction cosines of the internal normal n to the contour T,
plotted from the point M(x, y) (Fig.5) with the coordinate axes. Outside the

region D¢, eq.(L.20) yields - taking the selection of the sign into account -

1. Let us solve the problem of the natural oscillations of a fluid, given
the following additional assumptions: 1) the vessel walls are vertical in the
neighborhood of the free surface, i.e., N =n, 6§ = 0 in the neighborhood of the
contour I'; here h is an unambiguous function x, y and the fluid everywhere is
located below the free surface; 2) the contact angle is constant: vy = const;
3) 3h/ds = 0, i.e., h = h(n) everywhere in the neighborhood of the contour T
then T; is a planar contour and its projection onto the xy-plane coincides with
T'. This last assumption is correct if, for example: a) the vessel walls in the
neighborhood of T form a circular cylinder (then the vessel need not even be
axisymmetric), b) the vessel walls in the neighborhood of T are plane, c) v =
= m/2 for an arbitrary vessel.

These assumptions greatly simplify the condition (1.20) for the contour T.

In fact, for the points on the dynamic free surface we have
108

where k is the unit vector of the z-axis, and the gradient is taken with respect

to the variables x, y. Considering that h = h(n), we can write

= cos Y. along T.




respect to £, we will obtain the condition 9f/3n = 0 at I'. This condition is a

simplified variant of the condition (1.20), under the above assumptions.
Passing now to the solution of the problem of natural oscillations, we pose

9 = et D(r, v; 4. ez, ;). |

where w is the sought eigenfrequency. The function ¢ is harmonic in the region

occupied by the fluid, and satisfies the condition 3¢/3N = C at the wall. In-
stead of egs.(4.7) we then have, at z = h = hg,

(5.1)
(5.2)

Moreover, we have the condition 3F/3n = O along I'. The problem is to determine

the eigenfrequencies w at which the linear homogeneous boundary-value problem

for ¢, F has a nonzero solution, and to find the functions ¢, F themselves in

this case (eigenfunctions).

In the absence of surface tension (¢ = 0, h = hy = 0) the properties of the
problem of natural oscillations are well-known (Bibl.3). In this case, we

have a discrete spectrum w, of natural frequencies (m =1, 2, ...) and the cor—

responding eigenfunctions %, form a complete and orthogonal system in the

region (), bounded by the vessel walls and the plane z = O. For simplicity, we

will assume the frequencies to be nonmultiple. In the region D of the plane

z = O bounded by the contour ', at ¢ = O, we have instead of egs.(5.1), (5.2)

(5.3)
tiomt "D - Fou = 0. (5.4)
Since the walls are vertical, it follows that 3%;/aN = 3%,/3n = 3F,/3n = O for

the contour I'. Note also that the functions Fy(x, y) form a complete and
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orthogonal system in the region D. We subordinate these to the condition of

norming SWI‘I ‘ﬁ (5.5)

The eigenfrequencies w, and the functions &,, F» of the nomperturbation
problem (o = ¢ = 0) will be assumed as known. The solution of the perturbation

problem (¢ # 0), close to the m—th natural oscillation in the nomperturbed case,

will be sought by the method of the perturbation theory (Bibl.ll), adopting /1090

L2/

D=1, + E(t/“l+!’Bn)®&. Fe=Fm+ S ~ )F‘.‘ (5.6)

Romi

The laplace equation, the condition at the walls for Q; ;ﬁé tﬁé conﬁition
d9F/d3n = O for T are then satisfied. Equations (5.1), (5.2) must be removed to
the region D of the plane xy, and egs.(5.6) must be substituted there; all
functions must be expanded in a series with respect to the functions of the
orthonormed system F,. Equating the coefficients for identical degrees of ¢,
we will find the required corrections for the freaquency (A, u) and the eigen-
functions (Ax, Br, ar, Dy)e

The Fourier coefficients of the function g(x, y), determined in the region

D, are calculated from the formula

aﬁé ehh iﬂ!ﬁ (5.7)
If !g" = o(e®), where the norm is construed as ﬁhe space Lz, then |g | = o(e?),
a function which can be neglected in egs.(5.1), (5.2). Note that since h, h,
are zero outside D¢, while inside D¢ the estimates (4.10) apply [the area of the
region D¢ beingO(e)], then "h" ~ ¢, "h," ~ £; below, this will be taken into
account.

2. Since the projection of the free surface onto the plane z = 0 coincides

with the region D, egs.(5.1), (5.2) may be canceled over the vertical to D.
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For any function f(x, y, 2) on the free surface z = h - he, we have
Heiwez) = M0, 0 + 1.2, 7, 0) (b — ko) F g5, (5.8)

where the norm of the discarded terms is smaller than O(e®). Converting &, %,,

[Ie]]

ys 8, according to eq.(5.8) and utilizing egs.(4.20) and &,, = ~&,, - &,,, we

have instead of egs.(5.1), (5.2),

(5.9)
- (5.10)
Here, the terms with ﬁhe norm o(ez) are discarded and the operations v, A are
calculated with respect to the variables x, y.

Since the walls are vertical, egs.(5.3), (5.4), (5.6) yield, for the

contour T,

T = = =0 (5.11)

In the region De, the derivatives (5.11) are O(e). Therefore, the last term in
Q2 from eq.(5.10) is of the order of ¢ in D¢ and is zero outside Dg, i.e., it
can be discarded without impairing the accuracy.

Analogously, considering that in this case hy = O, hy ~ 1 in D¢, we con-
clude that (vh, v%,) ~ e in D¢, so that the last term in Q from eq.(5.9) also
can be discarded. The other terms in Q, Qe have the norm 0(e®); in particular,
ho ~ ¢, as is evident from eq.(4.19). Hence, on substituting the series (5.6)
into Qi, Qa, a substitution of only the main terms F = Fy, & = §,, 0 = @, will
suffice. On additionally expressing %,, 3,, with the aid of egs.(5.3), /1091

(5.4), we have

eI

Ol o — e AV (5.12)

let us then calculate the Fourier coefficients of the functions Qy, Q2

according to eg.(5.7). First of all, on the basis of eq.(5.11), we have
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§ FrdPndzdy m — § (VEp, WFV) iz
: r B :

o - (5.13)
P div (V) dr dy = — § h(VFn, VFo) dxdge
" ' o = e

@
An integration over the region D of the functions that are nonzero only in

D¢ reduces to an integration over n from O to « (h rapidly decreases when n —

—~ @) and to an integration over the arc s of the contour I'. Then, the functions

Fa, VFy can be replaced, without reducing the accuracy, by their values over I.

Note also that, for & = O, it follows from eg.(4.18) that

Shm-snwmﬁ%“ (5.14)
' B

Using egs.(5.13), (5.14), (5.5), we find the required Fourier coefficients of

the functions Q;, Qg from eg.(5.12) in the form of

S (VFm, VF\)dzdy .}ﬁﬁ‘
P ‘ e

On = —P§ (Yo, VP dy — Lt 4 & (515
D

where he is determined by eq.(4.19) for 8 = 0, v = const, with L being the

length of the contour I':

o aﬂ’ln‘”’? , (5.16)

Since the Fourier coefficients Qy, Q of the right-hand side of egs.(5.5),
(5.10) are 0(¢®), for terms of the order of ¢ in the series (5.6) we have a
homogeneous system of equations which is satisfied by a zero solution. In other
words, since the perturbation is of the order of ¢®, the corrections for the
eigenfrequencies and eigenfunctions also are of this order. Therefore, X =

=A =3 =0,k=1, 2, ...) in eq.(5.6).

Using egs.(5.3), (5.4) we will transform the series (5.6) in the region D:
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emenit ), O=tFuiueT B
om LT Lay

-

(5.17)

Lo}

FmFate Dbk, @, = lomFm+ ”’z N
Roml

Let us next substitute eq.(5.17) into the left-hand sides of egs.(5.9), (5.10)

and equate the Fourier coefficients of the left- and right-hand sidesof these /1092
equations. This will yield the algebraic solutions
: ‘w-z’bm + lzi,.:';, - l«o,..e"-B.‘.. = Qtm,

_‘!2 21} :b (5’18)
for k = m and = lin + Elbm = Uin
lu-.c‘b. — lc’wul’a = th - %,’: C:Bu + t’b‘ - o- 5 -19 )
a .
for ¥ # m. From the systems (5.18), (5.19), we have
(5.20)

ey = A (1Qu + 0m@n) ,

e’ b ==
2 2 n
WOx€ - O

Thus, the problem formulated for the case of vertical walls is solved. All
the nonzero coefficients of the series (5.6) are expressed by means of egs.(5.20),
(5.15), (5.16) in the form of wy, Fy, contact angle y, parameters of the vessel,
and properties of the fluid. The coefficients By, b, are, by virtue of
eq.(5.20), determined with an accuracy to within an arbitrary term, which can
be selected on condition of norming the perturbed eigenfunctions. Note that the
corrections calculated in this case are proportional to ¢, i.e., to .

In the particular case of v = 1/2, egs.(5.15), (5.16) yield

Here, the perturbation is determined by the integral with respect to the entire

free surface (surface effect).
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In the general case of v ¥ 1/2, egs.(5.15) contain also integrals over the
contour I', expressing the boundary effect of the meniscus (pronounced curvature
of the free surface at the walls), In the case of vertical walls, both effects
(surface and boundary) are of the same order.

We will write the correction for the m-th eigenfrequency by using

egs.(5.20), (5.15), (5.16), and (4.9):

20w 0 Ry wm’licosy [, & .- -
2pg{§)(v.,..)‘dzdy+ Sk -] Ry,

Wm
- “DZ ‘S’rl"mlds +% &r(g{g}y d.}}; :

(5.21)

In the case of v = m/2, when the static free surface is plane, eq.(5.21)

will yield the formula
-8 == G
W

= ,::g; (VFujdzdy >0, (5.22)

showing that the eigenfrequency increases owing to surface tension, which is
produced by the elasticity of the free-surface film. This case [in particular,

eq.(5.22)] was considered by A.A.Petrov. At vy # 7/2, eq.{5.21) contains terms

*agsociated with the boundary effect, which are proporticnal to cos y and /1093

have different signs for wetting (y < 1/2) and nonwetting (v > m/2) fluids. The
total effect [sign of the entire right—hand side of eq.(5.21)] for v # 7/2 may
differ.

let us consider also the case of a two-dimensional motion of the fluid in
the plane xz. In this case, F = F(x) and the free boundary will be a line or,
if 0 = O, a segment [x3, xz] of the x~axis. In our calculations, and particu-
larly in egs.(5.5), (5.15), the integrals over the region D must be replaced by
integrals over the segment [x;, Xx=2] and the contour integrals over I', by the

sum of the values of the functions at the points x = x; and x = x3. The terms
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containing derivatives to s will be discarded and the area D will be replaced
by the length of the segment x; - x3. Equations (5.20) will not change, but

the formula for correction for eigenfrequency will become

,, ?IF-'(t)P + [w y(x)+ cosy ()} X
(5.23)

Equation (5.23) is valid also in the case where the contact angles differ for

X =X;and X = Xg.

Section 6. Examples

let us consider the oscillations of a liquid in a vessel with vertical
walls, given a constant depth H. In this case, as is known (Bibl.8),
== ¥a(z, Ykoshkm(s + H),
where the constant k, is assoclated with the frequency w,:
Om? = kg tinbk . (6.1)
Laplace's equation for %, and egs.(5.11) show that F, satisfies, in the region
D, the boundary-value problem
AFust kwFu =20 inD, OFn/On=20in T, (6.2)
1. First, let us consider two-dimensional oscillations of the fluid (in
the xz-plane) in a rectangular vessel with walls x = O, x = a. The solution of
the problem (6.2) with respect to eigenvalues in this case [the region D is

here the segment [0, al] of the x-axis] will be

- rm2 =Vl k=™ om0 12 6.
Foostucos——, en Va(t-l—ﬁ...q) v knm——, m=0,1,2,.... (6.3)

Here, c, is selected from the norming condition (5.5) and 84, is the Kronecker
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delta. Substituting eq.(€.3) into the general formula (5.23) with cos v(0C) =

= cos v(a), simple transformations on the basis of eq.(6.1) will yield

“"‘% ' oa‘m‘! drosv mthm
M%‘ am "%

e

a-ni.z... . (6.4)

If T - 0, the coefficient for cos v in eq.(6.4) increases without limits.
Therefore, for sufficiently small vessels, the correction for eigenfrequency is
chiefly determined by the boundary effect and depends on the wettability of the
walls: for the wettability (v < m/2), this correction is negative and for 100
the wettability (v > m/2), positive. If, on the other hand, m - » for fixed a,
H, then the coefficient for cos v in the parentheses of eq.(6.L) decreases.
Therefore, given sufficiently high frequencies, the frequency correction is de-
termined by the surface effect, is positive, and rapidly increases with in-
creasing m. For sufficiently large m, this correction becomes so large that
the postulates of the perturbation theory, utilized above, no longer are appli-
cable.

Of greatest interest is the correction for the lower nonzero eigenfrequency
en(m = 1). If the fluid does not wet the walls (v > m/2), the frequency w,
always will increase. In the case of a wetting fluid (v < m/2), the correction
for w; may have either sign. If cosvy >m/lLorvy < 38°, the lower frequency
will decrease (w < w, ), as follows from eq.(6.4), for any a, H.

2. Let us then consider the oscillations of a fluid in a cylindrical
vessel of a depth H and a radius R. The eigenfunctions of the problem (6.2)

have the following form for a circle of radius R (Bibl.12):

G Ry MO Fauam Emelm{fmer ! R) il (6.5)
= teivﬁﬁ.fl"), Fop w5 €g, m, es=14,2,....

where r, ? are polar coordinates in the xy-plane, with the center at the cylin-
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der axis, ups are positive consecutive roots of the derivatives of Bessel func-

tions

Im’(”m') =0, 0<pmy <pnm2<..., mﬁﬂ;i,’.!. cssy B ‘. 3 3

The numbers ks, are related to pus DY kesR = Wy form =C, 1, 2, cee, 5 =
=1, 2, eeey and kgg = O. The frequencies wys are expressed through kas by
the common formula (é.1). From the norming condition (5.5) for the functions

(6.5) we have (Bibl.12)

=g
S
it nR

*

(6.6)

where the frequencies w,; are double when m = 1 and then correspond to the
eigenfunctions Fﬁﬁ), 72 from eq.(6.5). For multiple frequencies (degenerate
case) the method of the perturbation theory used in Section 5 is, generally
speaking, modified and the multiple frequencies are split. In this case, the
mltiplicity of the eigenfrequencies of the cylindrical vessel is due to its
axial symmetry. Since the perturbation also is symmetric (v = const), the
eigenfrequencies of the perturbation problem remain multiple (perturbation does
not exclude degeneration). Therefore, the corrections here may be calculated

according to the previous formulas. Substituting egs.(6.5), (6.6) into

eq.(5.21) will yield

(6.7)

bt} el 42, FmE

2

As in the case of a rectangular vessel [eq.(6.4)] for small H, the /1095

principal role in eq.(é.7) is played by the terms associated with the boundary
effect and for large m, s - by the terms associated with the surface effect.

The lower nonzero eigenfrequency corresponds to the least number u.s equal to
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Py = i_.ﬂ'nl. me== i, g ==1,

In the presence of this natural oscillation, the points of the free surface
lying on some diameter of the circle r = R remain fixed. The correction for
the frequency w,, will be positive for a nonwetting fluid, whereas for a wetting
fluid it can be of either sign. This correction will be negative for any H, R
provided that M cos v > 1, where M is the minimum - with respect to H, R - of

the coefficient for cos v within the braces in eq.(6.7) at m

n
[
-
]
"
)
.
[
ot

is readily shown that this minimum is attained at H = », and eq.(6.7) then can’

be simplified to

&= Om W”‘"—(i— 2msv)
Ome 2pik \ Boa /°

Therefore, at cos ¥y > 1y,/2 = 0.92, v < 23° the lower frequency of the natural
oscillations of a fluid in a cylindrical vessel decreases owing to surface
tension (no matter what the depth and radius of the vessel).

The authors wish to express their gratitude to A.D.Myshkis and A.D.Tyuptsov
for reading the manuscript of this article and furnishing comments which were

used in final editing.
BIBLIOGRAPHY

L. landau, L.D. and Lifshits, Ye.M.: Solid~State Mechanics (Mekhanika
sploshnykh sred). Moscow, Gostekhizdat, 1953.
2. Gobson, Ye.V. (Hobson, E.V.): Theory of Spherical and Ellipsoidal Functions
(Teoriya sfericheskikh i ellipsoidal'nykh funktsiy). Moscow, Izd. Inostr.
Iit., 1952.
3. Moiseyev, N.N.: Introduction to the Theory of Oscillations of liquid-

Containing Bodies. Advan. Appl. Mech., Vol.8, pp.230-295, 196..

38



h. ¥Mikhlin, S.G.: Variational Methods in Mathematical Physics (Variatsionnyye
metody v matematicheskoy fizike), Moscow, Gostekhizdat, 1957.

5. Moiseyev, N.N.: On Certain Mathematical Problems of the Relative Motion of
Satellites (Sur certains problémes mathématiques du mouvement relatif des
satellites). Dynamics of Satellites (Symposium, Paris, May 1962).
Springer-Verlag, Berlin, pp.313-355, 1963.

6. Chernous'ko, F.L.: Motion of a Solid with a Cavity Containing an Ideal
Fluid and an Air Bubble (O dvizhenii tverdogo tela s polost'yu, soder-
zhashchey ideal'nuyu zhidkost! i puzyr! vozdukha). Prikl. Matem. i
Mekhan., Vol.28, No.L, pp.735-745, 196L.

7. Moiseyev, N.N.: Narrow-Band Type Asymptotic Methods. In Coll.: Certain
Problems of Mathematics and Mechanics (Asimptoticheskiye metody tipa
uzkikh polos. V sb. Nekotoryye problemy matem. i mekhan.). Novosibirsk,
Izd. Sibirsk. Otd. Akad. Nauk SSSR, pp.180-200, 1961.

8. Kochin, N.B., Kibel', I.A., and Roze, N.V.: Theoretical Hydromechanics
(Teoreticheskaya gidromekhanika). Vol.I, II, Moscow, Fizmatgiz, 1963.

9. Vishik, M.I. and Iyusternik, L.A.: Regular Degeneration and the Boundary
layer for Small-Parameter Linear Differential Equations (Regulyarnoye
vyrozhdeniye i pogranichnyy sloy dlya lineynykh differentsial?tnykh
uravneniy s malym parametrom). Usp. Matem. Nauk, Vol.l2, No.5(77),
pp.3-122, 1957.

10. Smirnov, V.I.: Course in Higher Mathematics (Kurs vysshey matematiki).
Vol.IV, Moscow, Fizmatgiz, 1958.

11. Titchmarsh, E.Ch.: Expansions of Eigenfunctions Associated with Second-
Order Differential Equations (Razlozheniya po sobstvennym funktsiyam,

svyazannyye s differentsialtnymi urawneniyami vtorogo poryadka). Vol.II,

39



NASA TT F-10,141

Moscow, Izd. Inostr. ILit., 1961.

12. Babich, V.M. et al.: Linear Equations of Mathematical Physics (Lineynyye

I3

uravneniya matematicheskoy fiziki). MKoscow, Izd. Nauka, 196k.

Received July 30, 1964

4O




